Changes in global nitrogen cycling during the Holocene epoch

Peer Reviewed

McLauchlan KK, Williams JJ, Craine JM, & Jeffers ES

Nature 495, pages 352–355, 2013, 10.1038/nature11916.

Human activities have doubled the pre-industrial supply of reactive nitrogen on Earth, and future rates of increase are expected to accelerate. Yet little is known about the capacity of the biosphere to buffer increased nitrogen influx. Past changes in global ecosystems following deglaciation at the end of the Pleistocene epoch provide an opportunity to understand better how nitrogen cycling in the terrestrial biosphere responded to changes in carbon cycling. We analysed published records of stable nitrogen isotopic values (δ15N) in sediments from 86 lakes on six continents. Here we show that the value of sedimentary δ15N declined from 15,000years before present to 7,056±597years before present, a period of increasing atmospheric carbon dioxide concentrations and terrestrial carbon accumulation. Comparison of the nitrogen isotope record with concomitant carbon accumulation on land and nitrous oxide in the atmosphere suggests millennia of declining nitrogen availability in terrestrial ecosystems during the Pleistocene–Holocene transition around 11,000 years before present. In contrast, we do not observe a consistent change in global sedimentary δ15N values during the past 500years, despite the potential effects of changing temperature and nitrogen influx from anthropogenic sources. We propose that the lack of a single response may indicate that modern increases in atmospheric carbon dioxide and net carbon sequestration in the biosphere have the potential to offset recent increased supplies of reactive nitrogen in some ecosystems.

Keywords: Biogeochemistry, Nitrogen, Nutrient limitation, Palaeoecology
Categories: Arctic, Natural Science