Eddy contributions to the meridional transport of salt in the North Atlantic

Peer Reviewed

Tréguier AM, Deshayes J, Lique C, Dussin R, & Molines JM

Journal of Geophysical Research: Oceans (1978–2012) 117, Issue C5, pages C05010, 2012, 10.1029/2012JC007927.

The meridional transport of salt in the Atlantic ocean is an important process for climate, controlling the stability of the meridional overturning circulation. The contribution of transient eddies to this transport is quantified in an eddy resolving North Atlantic model at 1/12° resolution (NATL12), and compared with lower resolution North-Atlantic and global 1/4° models. In NATL12 between 10°N and 40°N, there is a volume loss by evaporation of 0.6 Sverdrups (Sv). The divergence of the eddy flux of salt (normalized by a reference salinity of 34.8) is 0.2 Sv over the region, a significant fraction of the total air-seawater exchange, but it is compensated by an opposite convergent transport of salt by the mean flow, so that the total transport of salt is small. The compensation between eddy and mean salt transport is almost complete in a multicentury long global model experiment, but less effective in NATL12 because the short integration time does not allow the salt content to equilibrate and the model drift is large. Eddies arising from baroclinic instability contribute to the meridional salt transports at the northern and southern boundary of the subtropical gyre, where they appear consistent with a lateral diffusion acting on the mean salinity gradient. However, the eddy transport of salt is the sum of two terms: an advective contribution (arising from the correlations of velocity and isopycnal thicknesses) and a diffusion along isopycnals. Both components have the same amplitude at the southern boundary of the subtropical gyre, while diffusion is dominant at the northern boundary.

Keywords: Atlantic Ocean, Eddies, Salinity
Categories: Arctic, Natural Science